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1. Introduction

It is believed that the Einstein-Hilbert action is just the first term in the derivative ex-

pansion in a low energy effective theory. In general, higher order quantum corrections to

gravity might appear, whose corresponding couplings are unknown until now. Among the

higher derivative gravity theories, Lovelock gravity [1] possesses some special features: it

leads to field equations which are up to and linear in second derivatives of the metric, it

obeys generalized Bianchi identities which ensure energy conservation, and it is known to

be free of ghosts when expanded on a flat space, avoiding problems with unitarity [2].

In presence of cosmological constant, the Euclidean continuation of the bulk gravity

action and the conserved quantities are in general divergent. In the AdS/CFT context [3],

one deals with the regularization problem for Einstein-Hilbert action by adding local func-

tionals of the boundary metric (Dirichlet counterterms) [4]. Because of this dependence,

they preserve a well-defined variational action principle for a Dirichlet boundary condition

on the metric (achieved through the Gibbons-Hawking term) when varied. However, the

systematic construction [5] that provides the form of the counterterms becomes cumber-

some for high enough dimensions, what has prevented from finding a general pattern for the

series for any dimension until now. In Lovelock gravity, it is expected that the holographic

renormalization procedure would be even more complicated.

An alternative regularization scheme has been proposed for Einstein-Hilbert [6, 7],

Einstein-Gauss-Bonnet [8], and Chern-Simons [9] gravity theories with AdS asymptotics. It
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considers the addition to the bulk action of boundary terms with dependence on the extrin-

sic curvature. In this paper, we show that this prescription is universal for all Lovelock-AdS

theories, attaining a regularized action and finiteness of the conserved charges .

2. Lovelock gravity

In D = d + 1 dimensions, the Lovelock action reads

ID =
1

16πGD

∫

M

[(D−1)/2]
∑

p=0

αpLp + cd

∫

∂M
Bd, (2.1)

where Lp corresponds to the dimensional continuation of the Euler term in 2p dimensions

Lp =
1

(D − 2p)!
ǫA1...AD

R̂A1A2 . . . R̂A2p−1A2peA2p+1 . . . eAD , (2.2)

=
1

2p

√
−G δ

[ν1···ν2p]

[µ1···µ2p]
R̂µ1µ2

ν1ν2
· · · R̂µ2p−1µ2p

ν2p−1ν2p dDx . (2.3)

Hatted curvatures stand for D-dimensional ones. The orthonormal vielbein eA = eA
µdxµ

produces the spacetime metric by Gµν = ηAB eA
µeB

ν and the curvature 2-form is defined

as R̂AB = dωAB + ωA
CωCB in terms of the spin connection one-form ωAB = ωAB

µdxµ

and related to the spacetime Riemman tensor by R̂AB = 1
2R̂κλ

µνeA
κeB

λdxµdxν . Wedge

products are omitted throughout. The first term in the Lovelock series corresponds to

the cosmological term L0 =
√
−G dDx, L1 =

√
−G R̂ dDx is the Einstein-Hilbert term,

L2 =
√
−G (R̂µνκλR̂µνκλ−4R̂µνR̂µν + R̂2) dDx is the Gauss-Bonnet term, etc. The first

coefficients are α0 =−2Λ= (D−1)(D−2)
ℓ2

, α1 =1, whereas all the other αp’s are arbitrary.

The action (2.1) appears supplemented by a boundary term Bd. We shall display below

the universal form of Bd for any Lovelock theory with AdS asymptotia that regularizes both

the conserved quantities and the Euclidean action.

The equation of motion for a generic Lovelock gravity (with zero torsion) is obtained

varying with respect to the metric and takes the form

Eν
µ =

[(D−1)/2]
∑

p=0

αp

2p
δ
[νν1···ν2p]
[µµ1···µ2p] R̂

µ1µ2
ν1ν2

· · · R̂µ2p−1µ2p
ν2p−1ν2p = 0. (2.4)

The vacua of a given Lovelock theory are defined as the maximally symmetric space-

times that are globally of constant curvature. We will assume that all the corresponding

cosmological constants are real and negative, i.e.,

Λeff = −(D−1)(D−2)

2ℓ2
eff

, (2.5)

where ℓeff is defined as the effective AdS radius given by the solutions to the equation

[(D−1)/2]
∑

p=0

αp

(D−2p−1)!

(

−ℓ−2
eff

)p
= 0. (2.6)
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In the present paper, we will consider spacetimes whose asymptotic behavior tends to

the one of a locally AdS space, described in terms of its curvature by the condition

R̂κλ
µν +

1

ℓ2
eff

δ
[κλ]
[µν] = 0 (2.7)

at the boundary ∂M , or equivalently, R̂AB+(eAeB)/ℓ2
eff = 0 in differential forms language.

It is important to stress that this is a generic (local) condition that does not fix completely

the form of the metric.

In principle, it is not clear whether the holographic renormalization procedure might

provide a systematic algorithm to regularize a generic Lovelock-AdS theory, because of

the increasing complexity of the field equations respect to the Einstein-Hilbert case. The

alternative construction in this paper represents a way of circumventing the difficulties

of the standard method because, as we shall see below, it does not make use of the full

expansion of the asymptotic metric. Indeed, we will only consider the leading order for the

fields induced by this expansion to identify suitable boundary conditions for the variational

problem in AAdS gravity.

Without loss of generality, we write down the line element in Gauss-normal coordinates

ds2 = N2(ρ)dρ2 + hij(x, ρ)dxidxj , (2.8)

that can be obtained from a generic radial ADM foliation by gauge-fixing the shift functions

N i = 0. A definite choice of the lapse and the boundary metric generically describes AAdS

spaces in Lovelock gravity. Indeed, taking the lapse and the boundary metric as

N = ℓeff/2ρ, (2.9)

hij = gij(x, ρ)/ρ, (2.10)

where gij(x, ρ) accepts a regular Fefferman-Graham expansion [10]

gij(x, ρ) = g(0)ij(x) + ρ g(1)ij(x) + ρ2 g(2)ij(x) + · · · (2.11)

identically satisfies the condition (2.7) at the conformal boundary ρ= 0. Here, g(0) is the

boundary data of an initial-value problem, governed by the equations of motion written in

the frame (2.8)–(2.10). However, even for Einstein-Hilbert theory, solving the coefficients

g(k) in series (2.11) as covariant functionals of g(0) is only possible for low enough dimen-

sions. Moreover, for theories where eq. (2.6) has a single root, the equations of motion

posses a multiple zero in a unique AdS vacuum [11, 12]. This causes the first nontrivial

relation for a given coefficient g(k) to appear at a higher order in ρ, what substantially

increases the complexity of the equations. Therefore, one can expect that the extreme

nonlinearity of the field equations in Lovelock-AdS gravity would turn impractical the

application of holographic renormalization method to this class of theories.

In what follows, we propose a universal form of the boundary terms that make both

the conserved charges and the Euclidean action finite in Lovelock-AdS gravity. This con-

struction does not make use of the full Fefferman-Graham form of the metric (2.8)–(2.11)

for AAdS spacetimes, but simply considers the leading-order terms in the expansion of the

relevant fields.
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3. D = 2n + 1 dimensions

In Einstein-Hilbert-AdS gravity, the standard regularization using Dirichlet counterterms

reveals some differences between odd and even-dimensional cases. Indeed, it is only in odd

(bulk) dimensions that a vacuum energy for AdS spacetime appears. The quasilocal stress

tensor derived from the regularized action features a trace anomaly only in odd dimensions,

as well, what can be traced back to a logarithmic contribution in the FG expansion (2.11).

In the alternative regularization known as Kounterterms method, the existence of

a vacuum energy for Einstein-Hilbert [7] and Einstein-Gauss-Bonnet [8] AdS gravity in

odd dimensions is a consequence of a different form of the boundary terms respect the

even-dimensional case. Ultimately, the difference in the prescription for the regularizing

boundary terms is linked to the existence of topological invariants of the Euler class whose

construction is only possible in even dimensions [13, 14].

The standard Dirichlet counterterms consider the addition to the action of local, co-

variant functional of the boundary metric hij and the intrinsic curvature Rkl
ij (h). In the

present formulation, the boundary term Bd in eq. (2.1) will depend also on the extrinsic

curvature Kij, defined in the frame (2.8) by

Kij = − 1

2N
∂ρhij , (3.1)

and, because of this dependence, we will refer to it as Kounterterms series.

The explicit form the Kounterterms B2n adopt in any odd-dimensional Lovelock-AdS

gravity can be written in a compact way as

B2n = 2n
√
−h

∫ 1

0
dt

∫ t

0
ds δ

[i1...i2n−1]
[j1...j2n−1]

Kj1
i1

(

1

2
Rj2j3

i2i3
− t2Kj2

i2
Kj3

i3
+

s2

ℓ2
eff

δj2
i2
δj3
i3

)

× · · ·

· · · ×
(

1

2
R

j2n−2j2n−1

i2n−2i2n−1
− t2K

j2n−2

i2n−2
K

j2n−1

i2n−1
+

s2

ℓ2
eff

δ
j2n−2

i2n−2
δ
j2n−1

i2n−1

)

d2nx, (3.2)

which, when expanded, produces a polynomial in the intrinsic and extrinsic curvatures

whose relative coefficients are obtained performing the above parametric integrations

B2n = n!
√
−h

n−1
∑

p=0

(2n−2p−3)!!

ℓ2(n−1−p)
b
(p)
2n , (3.3)

where

b
(p)
2n = δ

[i1···i2p+1]
[j1···j2p+1]

p
∑

q=0

(−1)p−q

(p−q)! q!

2n−(p+q+1)

n−q
Rj1j2

i1i2
· · ·Rj2q−1j2q

i2q−1i2q
K

j2q+1

i2q+1
· · ·Kj2p+1

i2p+1
. (3.4)

The tensorial formula of the boundary terms (3.2), adapted to a radial foliation of the

spacetime, can be cast into a fully Lorentz-covariant 2n−form with the definition of the

second fundamental form θAB=nAKB−nBKA,
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B2n = 2n

∫ 1

0
dt

∫ t

0
ds ǫa1...a2n

Ka1ea2

(

Ra3a4−t2Ka3Ka4+
s2

ℓ2
eff

ea3ea4

)

× · · ·

· · · ×
(

Ra2n−1a2n−t2Ka2n−1Ka2n+
s2

ℓ2
eff

ea2n−1ea2n

)

, (3.5)

= n

∫ 1

0
dt

∫ t

0
ds ǫA1...A2n+1θ

A1A2eA3

(

RA4A5+t2θA4
CθCA5+

s2

ℓ2
eff

eA4eA5

)

× · · ·

· · · ×
(

RA2nA2n+1+t2θA2n

F θFA2n+1+
s2

ℓ2
eff

eA2neA2n+1

)

, (3.6)

where the extrinsic curvature KA = KA
BeB satisfies KAB = −hC

AhD
BnC;D, with nA the

outward unit normal vector at the boundary. The orthonormal frame takes the block-

diagonal form e1 =Ndρ, ea = ea
idxi, such that the only non-vanishing components of θAB

are θ1a =Ka =Ki
je

a
idxj, and the submanifold Levi-Civita tensor is ǫa1...ad

=ǫ1a1...ad
. RAB is

the intrinsic curvature 2-form, that for a radial foliation contains only components on the

boundary submanifold. Remarkably, the form of B2n is preserved regardless the particular

theory considered, only the corresponding coupling constant changes accordingly, as shown

below.

3.1 Variational principle and boundary conditions

An arbitrary variation of the action produces the equations of motion plus contributions

to the surface term that can be traced back to the bulk and boundary terms in (2.1)

δI2n+1 =

∫

M
(E.O.M.)+

1

8πGD

∫

∂M

n
∑

p=1

pαp

(D−2p)!
ǫa1...a2n

δKa1R̂a2a3 . . . R̂a2p−2a2p−1ea2p . . . ea2n

+2nc2n

∫

∂M

∫ 1

0
dt ǫa1...a2n

δKa1ea2

(

R̂a3a4 +
t2

ℓ2
eff

ea3ea4

)

. . .

(

R̂a2n−1a2n +
t2

ℓ2
eff

ea2n−1ea2n

)

−2nc2n

∫

∂M

∫ 1

0
dt t ǫa1...a2n(δK

a1ea2−Ka1δea2)

(

Ra3a4−t2Ka3Ka4+
t2

ℓ2
eff

ea3ea4

)

× · · ·

· · · ×
(

Ra2n−1a2n−t2Ka2n−1Ka2n+
t2

ℓ2
eff

ea2n−1ea2n

)

. (3.7)

Here, we have extensively used the Gauss-Coddazzi relation for the boundary compo-

nents of the Riemann 2-form

R̂ab = Rab−KaKb, (3.8)

that in the standard tensorial notation reads

R̂kl
ij = Rkl

ij − Kk
i K l

j + Kk
j K l

i . (3.9)

A well-defined action principle for Lovelock-AdS gravity amounts to the on-shell cancel-

lation of the surface term in eq. (3.7) by imposing suitable boundary conditions, that
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either are derived from, or at least, are compatible with the asymptotic behavior of the

metric (2.8)–(2.11).

For the extrinsic curvature, the FG expansion produces

Ki
j = hikKkj =

1

ℓeff
δi
j −

ρ

ℓeff

(

g−1
(0)g(1)

)i

j
− ρ2

ℓeff

(

2g−1
(0)g(2)−g−1

(0)g(1)g
−1
(0)g(1)

)i

j
+ · · · , (3.10)

where the indices at the r.h.s. of the above equation are raised with the conformal structure

gij
(0). Then, the extrinsic curvature on the boundary is finite

Ki
j =

1

ℓeff
δi
j . (3.11)

In any gravity theory, hij and Kij are independent variables, because the extrinsic curvature

defines the canonical momentum πij. The fact that the extrinsic curvature can be written

in terms of the coefficients g(k) in the expansion of the metric does not mean that it is

determined only by the metric g(0). Indeed, as it is well-known, not even hij is completely

determined by solving the second-order field equations with only g(0) as the initial data

(Fefferman-Graham ambiguity for the coefficient g(n) with n=[D/2]). Then, Kij remains

as an independent variable even though the first terms in the expansion (3.10) are fixed by

g(0).

For the variational problem in odd dimensions, we will consider that at the boundary

the variations obey

δKi
j = 0, (3.12)

that is a regular boundary condition compatible with fixing the conformal metric g(0) on

∂M [15, 7]. Therefore, this boundary condition does not spoil the AdS/CFT interpreta-

tion of the conformal structure g(0) as a given data for the holographic reconstruction of

the spacetime in the gravity side, and whose dual CFT on the boundary does not have

gravitational degrees of freedom.

The last line in (3.7) is identically canceled by the conditions (3.11), (3.12). The

asymptotic behavior (2.7) for the curvature determines the coupling constant c2n

c2n =
1

16πnGD

[
∫ 1

0
dt (t2−1)n−1

]−1 n
∑

p=1

(−1)pp αp

(D−2p)!
ℓ
2(n−p)
eff , (3.13)

in order to cancel the rest of the surface term (3.7).

In the standard Dirichlet regularization for AdS gravity, fixing the conformal structure

g(0)ij in the boundary metric (2.10), (2.11) will require the addition of counterterms to

cancel the divergence at the boundary ρ = 0 [16]. In our case, we select the boundary

conditions (2.7), (3.11) and (3.12), which are regular on the asymptotic region, such that

the regularization process is encoded in the boundary terms already present and there is

no need of further addition of counterterms.
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3.2 Conserved quantities and vacuum energy

The Noether theorem applied to Lovelock-AdS gravity states that there is a set of conserved

charges Q(ξ) associated to asymptotic Killing vectors ξ, that are defined as (D−2)−forms,

and therefore, are integrated on the boundary of a spatial section at constant time. More

precisely, we take a timelike ADM foliation for the line element at the boundary

hij dxidxj =−Ñ2(t) dt2+σm n(dϕm +Ñm dt)(dϕn +Ñn dt) , (3.14)

with the coordinates xi = (t, ϕm), that is defined by the unit normal vector ui = (−Ñ ,~0).

The charges are then given as the integration on the boundary Σ of a spatial section,

parameterized by ϕm

Q(ξ)=

∫

Σ
dD−2ϕ

√
σ ujQ

j
i ξi . (3.15)

In the above formula, σ denotes the determinant of the metric σm n, related to h by
√
−h=

Ñ
√

σ, and ξi is an asymptotic Killing vector. In odd dimensions, the expression for the

integrand appears naturally split in two pieces

Qj
i = qj

i + qj
(0)i , (3.16)

with

qj
i =

1

2n−2
δ
[jj2...j2n]
[i1i2...i2n] K

i1
i δi2

j2





1

16πGD

n
∑

p=1

pαp

(D−2p)!
R̂i3i4

j3j4
. . . R̂

i2p−1i2p

j2p−1j2p
δ
[i2p+1i2p+2]
[j2p+1j2p+2]

. . . δ
[i2n−1i2n]
[j2n−1j2n]

+nc2n

∫ 1

0
dt

(

R̂i3i4
j3j4

+
t2

ℓ2
eff

δ
[i3i4]
[j3j4]

)

. . .

(

R̂
i2n−1i2n

j2n−1j2n
+

t2

ℓ2
eff

δ
[i2n−1i2n]
[j2n−1j2n]

)]

,

(3.17)

qj
(0)i =−nc2n

2n−2

∫ 1

0
dt t δ

[jj2...j2n]
[i1i2...i2n](δ

i2
j2
Ki1

i +δi2
i Ki1

j2
)

(

Ri3i4
j3j4

−t2K
[i3i4]
[j3j4]

+
t2

ℓ2
eff

δ
[i3i4]
[j3j4]

)

× · · ·

· · · ×
(

R
i2n−1i2n

j2n−1j2n
−t2K

[i2n−1i2n]
[j2n−1j2n]+

t2

ℓ2
eff

δ
[i2n−1i2n]
[j2n−1j2n]

)

, (3.18)

where we have used the shorthand K
[ik]
[jl] = Ki

jK
k
l − Ki

l K
k
j .

Equation (3.16) defines a splitting of the charges

Q(ξ) = q(ξ) + q0(ξ) , (3.19)

where

q(ξ)=

∫

Σ
dD−2ϕ

√
σ ujq

j
i ξi (3.20)

will provide the mass and angular momentum for AAdS black hole solutions in Lovelock

gravity. It can be shown that eq. (3.17) can be factorized in any odd dimension as

qj
i =

1

2n−2
δ
[jj2...j2n]
[i1i2...i2n]K

i1
i δi2

j2

(

R̂i3i4
j3j4

+
1

ℓ2
eff

δ
[i3i4]
[j3j4]

)

Pi5...i2n

j5...j2n
, (3.21)
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where P is a Lovelock-type polynomial of (n − 2)−degree in the Riemann tensor R̂ij
kl and

the antisymmetrized Kronecker delta δ
[ij]
[kl]

Pi5...i2n

j5...j2n
=

n−2
∑

p=0

(

nc2n
Dp

ℓ2p
eff

+
Fp

16πGD

)

R̂i5i6
j5j6

. . . R̂
i2(n−p)−1i2(n−p)

j2(n−p)−1j2(n−p)
δ
[i2(n−p)+1i2(n−p+1)]

[j2(n−p)+1j2(n−p+1)]
. . . δ

[i2n−1i2n]
[j2n−1j2n],

(3.22)

with the coefficients of the expansion given by

Dp =

p
∑

q=0

(−1)p−q

2q+1

(

n−1

q

)

, Fp =

p
∑

q=0

(−1)p−q (n−q)αn−q

(2q+1)! ℓ
2(p−q)
eff

. (3.23)

As the tensorial combination R̂kl
ij + 1

ℓ2
eff

δ
[kl]
[ij] is a part of the curvature of the AdS group

with an effective radius ℓeff , the factorization (3.21) implies that the charge q(ξ) vanishes

identically for global AdS spacetime. Note that for Einstein-Hilbert-AdS gravity, Fp = 0

and the above expression for q(ξ) recovers the corresponding charge in [7]. As a conse-

quence, the quantity q0(ξ)

q0(ξ)=

∫

Σ
dD−2ϕ

√
σ ujq

j
(0)i ξi , (3.24)

is truly a tensorial formula for the vacuum energy for AAdS spacetimes in Lovelock gravity,

inexistent in previous literature.

A static black hole solution for Lovelock gravity (2.1) for both odd and even dimensions

D is given by the metric

ds2 = −∆2(r)dt2 +
dr2

∆2(r)
+ r2γm ndϕmdϕn, (3.25)

with ∆(r) given by

[(D−1)/2]
∑

p=1

αp

(D−2p−1)!

(

k−∆2

r2

)p

=
2Λ

(D−1)!
+

µ

(D−3)! rD−1
, (3.26)

where µ appears as an integration constant in the first integral of the rr component of the

Lovelock equations of motion (2.4)

(∆2)′

r

[(D−1)/2]
∑

p=1

pαp

(D−2p−1)!

(

k−∆2

r2

)p−1

−
[(D−2)/2]

∑

p=1

αp

(D−2p−2)!

(

k−∆2

r2

)p

= − 2Λ

(D−2)!
,

(3.27)

and the prime stands for the derivative with respect to r coordinate. The metric γm n

(m,n = 1, . . . ,D − 2) defines the line element of the transversal section Σk
D−2 whose

curvature is a constant k = ±1, 0. Black hole solution (3.25) possesses an event horizon

r+, which is the largest root of the equation ∆2(r+) = 0. For this configuration, the only

non-vanishing components of the extrinsic curvature are

Kt
t = −∆′ , Kn

m = −∆

r
δn
m , (3.28)
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whereas the intrinsic curvature is

R
m1n1
m2n2

=
k

r2
δ
[m1n1]

[m2n2]
, (3.29)

which, in turn, produces the boundary components of the Riemann tensor to be

R̂
tn
tm =−(∆2)′

2r
δn
m , R̂

m1n1
m2n2

=
k−∆2

r2
δ
[m1n1]
[m2n2]

. (3.30)

Differentiating eq. (3.26) with respect to the horizon radius r+ and combining

eqs. (3.26), (3.27), we obtain the relation

∂µ

∂r+
= (D−3)! (∆2)′|r+

[(D−1)/2]
∑

p=1

pαp

(D−2p−1)!
rD−2p−1
+ kp−1. (3.31)

From the equation (3.26) that dictates the form of the function ∆2(r) in the metric, we

can obtain the asymptotic behavior (r → ∞)

∆2(r) ≈ k +
r2

ℓ2
eff

− µ

(D−3)!





[(D−1)/2]
∑

p=1

pαp(−ℓ−2
eff )p−1

(D−2p−1)!





−1

1

rD−3
+ · · · (3.32)

The corresponding mass is given by the evaluation of eq. (3.20) for the timelike Killing

vector ξ = ∂t

q(∂t) = M =(D−2)! vol(Σk
D−2)(∆

2)′

[

1

16πGD

n
∑

p=1

pαp

(D−2p)!
rD−2p(k − ∆2)p−1

+nc2nr

∫ 1

0
dt

(

k − ∆2 +
t2r2

ℓ2
eff

)n−1 ]
∣

∣

∣

∣

∣

∞

. (3.33)

Using the asymptotic form of ∆2(r) from (3.32), we see that the divergent terms O(rD−1)

in the evaluation of the above formula exactly cancel out and one gets the finite result

M =
(D−2) vol(Σk

D−2)

16πGD
µ. (3.34)

The zero-point (vacuum) energy is then given by (3.24) as

q0(∂t) = E0 = 2nc2n(D−2)! vol(Σk
D−2)

(

∆2− r(∆2)′

2

)
∫ 1

0
dt t

(

k−t2∆2+
t2r2

ℓ2
eff

)n−1 ∣

∣

∣

∣

∞

,

(3.35)

that can be worked out using the asymptotic form (3.32), giving the finite result

E0 = (−k)n
vol(Σk

D−2)

16πnGD
(2n−1)!!2

n
∑

p=1

(−1)p−1pαp

(D−2p)!
ℓ2n−2p
eff . (3.36)
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3.3 Black hole entropy

The Euclidean period β is defined as the inverse of black hole temperature T such that in

the Euclidean sector the solution (3.25) does not have a conical singularity at the horizon.

In doing so, one obtains β = 4π/(∆2)′|r+ . The black hole entropy S is defined in the

canonical ensemble (the surface gravity is kept fixed at the horizon) as

S = IE + βE , (3.37)

in terms of the total Euclidean action IE and the thermodynamical energy

E =−∂IE

∂β
(3.38)

of the black hole. The Euclidean bulk action is evaluated for a static black hole of the

form (3.25) as

IE
bulk = −(D−2)!

16πGD
vol(Σk

D−2)β

n
∑

p=1

pαp

(D−2p)!
[rD−2p(∆2)′ (k−∆2)p−1]|∞r+

, (3.39)

and it is rendered finite by the addition of the suitable boundary term (3.2), whose evalu-

ation in the Euclidean solution is

∫

∂M
BE

2n =−n(D − 2)! vol(Σk
D−2)β

[

r(∆2)′
∫ 1

0
dt

(

k − ∆2 +
t2r2

ℓ2
eff

)n−1

+2

(

∆2−r(∆2)′

2

)
∫ 1

0
dt t

(

k − t2∆2+
t2r2

ℓ2
eff

)n−1 ]
∣

∣

∣

∣

∣

∞

.(3.40)

Therefore, the total action contains two pieces. At r = ∞, the contribution from the bulk

action IE
bulk combines with the boundary term c2n

∫

∂MBE
2n to produce −β times the Noether

charge Q(∂t) = M + E0

IE
2n+1 =

(D−2)!

16πGD
vol(Σk

D−2)

[

4π

n
∑

p=1

pαp

(D−2p)!
rD−2p
+ kp−1 − βµ

(D−3)!

−β(−k)n
(2n−1)!!2

n(D−2)!

n
∑

p=1

(−1)p−1pαp

(D−2p)!
ℓ2n−2p
eff

]

. (3.41)

This identification guarantees that all the divergencies at radial infinity are exactly can-

celed.

The definition of thermodynamic energy, using equation (3.31), gives

E = −∂IE
2n+1/∂r+

∂β/∂r+
= M + E0, (3.42)

which recovers the same total energy as from the Noether charge Q(∂t) of (3.19). As a

consequence, the entropy (3.37) is simply given by the Noether charge evaluated at the

horizon

S =
(D−2)!

4GD
vol(Σk

D−2)
n

∑

p=1

pαp

(D−2p)!
rD−2p
+ kp−1. (3.43)
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4. D = 2n dimensions

For even dimensions, an alternative regularization procedure was developed originally for

Einstein-Hilbert-AdS action in [6] and applied to the same problem in AAdS gravity in

Einstein-Gauss-Bonnet theory [8]. As we shall explicitly show below, the universal form

of the boundary term that renders the conserved charges and Euclidean action finite in

Lovelock-AdS gravity in D = 2n corresponds to the (maximal) n−th Chern form [17 – 19]

B2n−1 = n

∫ 1

0
dt ǫA1...A2n

θA1A2

(

RA3A4 +t2θA3
CθCA4

)

. . .
(

RA2n−1A2n +t2θ
A2n−1

F θFA2n

)

. (4.1)

Eq. (4.1) can be projected to the boundary indices to work out its equivalence in tensorial

notation

B2n−1 = 2n

∫ 1

0
dt ǫa1...a2n−1K

a1
(

Ra2a3−t2Ka2Ka3
)

. . .
(

Ra2n−2a2n−1−t2Ka2n−2Ka2n−1
)

(4.2)

= 2n
√
−h

∫ 1

0
dtδ

[j1...j2n−1]
[i1...i2n−1 ] K

i1
j1

(

1

2
Ri2i3

j2j3
−t2Ki2

j2
Ki3

j3

)

. . . (4.3)

. . .

(

1

2
R

i2n−2i2n−1

j2n−2j2n−1
−t2K

i2n−2

j2n−2
K

i2n−1

j2n−1

)

d2n−1x.

In the last formula, the parametric integration reflects the action of the Cartan homotopy

operator, used to obtain the correction to the Euler characteristic due to the introduction

of a boundary in the Euler theorem. The integral in t is a convenient shorthand, but it

also generates the suitable coefficients in the binomial expansion

B2n−1 = 2n
√
−h

n−1
∑

p=0

(−1)n−p−1

2p (2n−2p−1)
b
(p)
2n−1, (4.4)

where

b
(p)
2n−1 = δ

[i1···i2p···i2n−1]
[j1···j2p···j2n−1]R

j1j2
i1i2

· · ·Rj2p−1j2p

i2p−1i2p
K

j2p+1

i2p+1
· · ·Kj2n−1

i2n−1
. (4.5)

The surface term coming from an arbitrary on-shell variation of the action (2.1) adopts a

slightly simpler form than in the odd-dimensional case

δI2n =

∫

∂M

1

8πGD

n−1
∑

p=1

pαp

(D−2p)!
ǫa1...a2n−1δK

a1R̂a2a3 . . . R̂a2p−2a2p−1ea2p . . . ea2n−1 +

+2nc2n−1ǫa1...a2n−1δK
a1R̂a2a3 . . . R̂a2n−2a2n−1 . (4.6)

An appropriate choice of the coupling constant c2n−1 as

c2n−1 = − 1

16πnGD

n−1
∑

p=1

pαp

(D−2p)!

(

−ℓ2
eff

)n−p
. (4.7)

makes the above expression vanish identically for AAdS spacetimes (2.7). The regularity

of the asymptotic condition (2.7) implies that the well-defined action principle achieved in

this way is also a finite one, because no additional divergences are induced by the addition

of the Kounterterms (4.3).
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4.1 Conserved charges

In Einstein-Hilbert and Einstein-Gauss-Bonnet with negative cosmological constant, we

have seen that the addition of boundary terms with explicit dependence on the extrin-

sic curvature Kij solve at once two problems that in general are not necessarily related:

the variational principle and the finiteness of the Noether charges and Euclidean action.

Whenever the action is stationary for boundary conditions compatible with the asymptotic

structure of AAdS spacetimes, the theory does not require a further regularization on top

of the addition of Bd in eq. (2.1).

The conserved charges constructed using the Noether theorem have the form

Q(ξ) =

∫

Σ
dD−2ϕ

√
σ ujQ

j
i ξi , (4.8)

with the integrand given by

Qj
i =

1

2n−2
δ
[jj2...j2n−1]
[i1i2...i2n−1]

Ki1
i

[

1

16πGD

n−1
∑

p=1

pαp

(D−2p)!
R̂i2i3

j2j3
. . . R̂

i2p−2i2p−1

j2p−2j2p−1
δ
[i2pi2p+1]

[j2pj2p+1]
. . . δ

[i2n−2i2n−1]
[j2n−2j2n−1]

+nc2n−1R̂
i2i3
j2j3

. . . R̂
i2n−2i2n−1

j2n−2j2n−1

]

. (4.9)

The mass for Lovelock-AdS black holes (3.25), (3.26) comes from the above formula for

the Killing vector ξ = ∂t, that is

Q(∂t) = M = (D−2)! vol
(

Σk
D−2

)

(∆2)′

[

1

16πGD

n−1
∑

p=1

pαp

(D−2p)!
rD−2p(k−∆2)p−1

+nc2n−1(k−∆2)n−1

]
∣

∣

∣

∣

∣

∞

. (4.10)

As in the odd-dimensional case, taking the asymptotic expansion of the functions involved

shows that the divergences at order rD−1 coming both from the bulk and boundary parts

of the action are exactly canceled. Thus, we obtain

M =
(D−2)vol(Σk

D−2)

16πGD
µ. (4.11)

4.2 Black hole entropy

The Euclidean bulk action IE
bulk is still given by the even-dimensional equivalence of equa-

tion (3.39)

IE
bulk = −(D−2)!

16πGD
vol(Σk

D−2)β

n−1
∑

p=1

pαp

(D−2p)!

[

rD−2p (∆2)′ (k−∆2)p−1
]

|∞r+
,

while the Euclidean continuation of the boundary term takes the form
∫

∂M
BE

2n−1 = −n(D−2)! vol(Σk
D−2)β (∆2)′ (k−∆2)n−1

∣

∣

∣

∞

. (4.12)

– 12 –



J
H
E
P
1
1
(
2
0
0
7
)
0
6
9

In the total Euclidean action in even dimensions evaluated for a black hole (3.25), (3.26)

IE
2n = IE

bulk + c2n−1

∫

∂M
BE

2n−1, (4.13)

the term at infinity corresponds to −βM , where M is the Noether mass in

eqs. (4.10), (4.11), that is

IE
2n =

(D−2)!

16πGD
vol(Σk

D−2)



4π
n−1
∑

p=1

pαp

(D−2p)!
rD−2p
+ kp−1 − βµ

(D−3)!



 . (4.14)

The consistency between the regularization procedure and the thermodynamic ensemble is

corroborated by the fact that the thermodynamic energy

E = −∂IE
2n

∂β
= M, (4.15)

reobtains the corresponding Noether charge. Finally, the black hole entropy is expressed

in terms of the horizon r+ in a similar form as eq. (3.43) for the odd-dimensional case

S =
(D−2)!

4GD
vol(Σk

D−2)

n−1
∑

p=1

pαp

(D−2p)!
rD−2p
+ kp−1. (4.16)

5. Particular cases

Einstein-Gauss-Bonnet-AdS gravity. In this case, all the coefficients in the Lovelock

series are vanishing but α0 = −2Λ, α1 = 1 and α2 = α, where α is an arbitrary positive

coupling constant. The effective AdS radius is modified by the Gauss-Bonnet coupling as

1

ℓ2
eff

=
1 ±

√

1 − 4(D−3)(D−4)α/ℓ2

2(D−3)(D−4)α
, (5.1)

such that the solutions tend asymptotically to a constant curvature spacetime with that

radius. The Noether charge in the corresponding odd and even dimensions, evaluated for

a timelike Killing vector ξ = ∂t for Boulware-Deser black holes

∆2(r) = k+
r2

2(D−3)(D− 4)α

[

1 ±
√

1 − 4(D−3)(D−4)α

ℓ2
+

4(D−3)(D−4)α µ

rD−1

]

, (5.2)

recovers the mass obtained by background-dependent methods [20 – 23]

M =
(D−2) vol(Σk

D−2)

16πGD
µ. (5.3)

However, background-independent methods are the only ones that can detect the presence

of a vacuum energy for Einstein-Gauss-Bonnet theory. The Dirichlet regularization for

arbitrary couplings of quadratic curvature terms, and therefore, useful to treat the EGB

action, is only known in five dimensions [24] and, for the Gauss-Bonnet case, it has shown
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to be ambiguous [25]. The procedure carried out here reproduces, by direct replacement of

the corresponding Lovelock coefficients {α0, α1, α2} in eq. (3.36), the general formula for

the vacuum energy for EGB-AdS theory

E0 = (−k)n
vol(Σk

D−2)

8πGD
ℓ2n−2
eff

(2n−1)!!2

(2n)!

(

1 − 2α

ℓ2
eff

(D−2)(D−3)

)

, (5.4)

that was first computed in [8] using Kounterterms regularization. The form of the boundary

terms that makes possible this result for EGB-AdS gravity shall be shown to be universal

below because it also provides finite expressions for the conserved quantities of AAdS

solutions in Lovelock gravity.

The existence of a vacuum energy does not modify the black hole entropy because as

the total energy E = M + E0 is shifted by a constant with respect to the mass calculated

with background-dependent methods, the Euclidean action changes in a consistent manner.

As a consequence, the entropy of the system can be written as

S =
vol(Σk

D−2) rD−2
+

4GD

[

1 +
2kα(D−2)(D−3)

r2
+

]

, (5.5)

in both odd and even dimensions. This formula have been found by several authors [26 – 28],

where some of the conserved quantities, including the entropy function have been computed

assuming that they satisfy the First Law of black hole thermodynamics. The same result

can be derived from the regularized Euclidean action as the free energy, obtained as dif-

ference between the Euclidean bulk action evaluated for a EGB-AdS black hole and AdS

vacuum [29 – 31] (for a similar background-substraction computation in string generated

gravity with quadratic curvature couplings, see [32]).

Dimensionally continued gravity. If one considers that the equation of motion for

Lovelock gravity (2.4) posseses m different vacuum (constant curvature) solutions, this

means that αp = 0 for p > m, while αm 6= 0 for 1 ≤ m ≤
[

D−1
2

]

. Then, eq. (2.4) can also

be written in the form

Eν
µ = δ

[νν1···ν2m]
[µµ1···µ2m]

(

R̂µ1µ2
ν1ν2

+ γ1δ
[µ1µ2]
[ν1ν2]

)

· · ·
(

R̂µ2m−1µ2m
ν2m−1ν2m

+ γmδ
[µ2m−1µ2m]
[ν2m−1ν2m]

)

= 0, (5.6)

where

αm−p = αm
(D−2m+2p−1)!

(D−2m−1)!

m
∑

i1<...<ip=1

γi1 . . . γip , 1 ≤ p ≤ m. (5.7)

The relation (5.7) defines an algebraic system of m equations for m unknows γ1, . . . , γm.

In the particular case where γ1 = · · · = γm = 1
ℓ2
eff

, the above equation produces for the

couplings αp the special values

αp =
(D−2p−1)!

(D−3)!m
ℓ2p−2
eff

(

m

p

)

, 0 ≤ p ≤ m. (5.8)

In the conventions we have adopted in this paper (α0 = −2Λ), we find that the effective

AdS radius is ℓ2
eff = ℓ2/m, whereas equation (2.6) becomes an identity.
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The label m takes the maximal value (m = [D−1
2 ]) for two particular Lovelock theories

that feature a symmetry enhancement from Lorentz to AdS group: Chern-Simons-AdS

(CS-AdS) and Born-Infeld-AdS (BI-AdS) in odd and even dimensions, respectively. Both

theories posses a single cosmological constant and the maximal number of curvatures for a

given dimension. Static black hole solutions for CS-AdS and BI-AdS theories were studied

in [11].

CS-AdS gravity is obtained from a Chern-Simons density for the AdS group in D =

2n + 1, such that the corresponding coefficients (5.8) in eq. (2.1) are given by

α(CS)
p =

(D−2p−1)!

(D−3)!n
ℓ2p−2
eff

(

n

p

)

, 0 ≤ p ≤ n, (5.9)

which produce equations of motion where AdS vacuum is a zero of n−th order. Topological

static black holes were studied in [33]. The horizon radius is defined by the relation (3.26)

µ = 1
nℓ2

eff

(r2
++kℓ2

eff )n, such that the formula (3.34) gives

M (CS) =
(D−2) vol(Σk

D−2)

16πnGDℓ2
eff

(

r2
++kℓ2

eff

)n
, (5.10)

whereas the vacuum energy (3.36) reduces to the form

E
(CS)
0 = −kn (D−2) vol(Σk

D−2)

16πnGD
ℓ
2(n−1)
eff . (5.11)

The last expression corresponds to the energy of global AdS spacetime. In CS-AdS gravity,

the AdS vacuum is separated from black holes (M > 0) by a mass gap of naked singularities

with mass in the interval M = (E0, 0), as in (2 + 1) dimensions. Eq. (5.10) is the standard

result for the mass, found in Hamiltonian form in [11, 33]. The vacuum energy was obtained

as a Noether charge evaluated in AdS in the background-independent formulation presented

in [9], using a boundary term proportional to (3.2). It is remarkable that the symmetry

enhancement in this case, turns the Dirichlet counterterms series exactly solvable from

the divergent parts in the expansion of the canonical variation of the action [34], and

this allows an explicit comparison between the Kounterterms procedure and the Dirichlet

regularization [35].

As usual in Lovelock gravity, black hole entropy in CS-AdS theory cannot be related

to the horizon area, but just expressed from eq. (3.43) in terms of r+ as

S(CS) =
(D−2) vol(Σk

D−2)

4GD

∫ r+

0
dr (r2+kℓ2

eff )n−1. (5.12)

The last result matches the one obtained using a mini-superspace model in the canonical

formalism [11, 33], and also the prescription for the entropy as a given (D− 2)−form

integrated at the horizon [27].

For BI-AdS gravity in D=2n dimensions, the couplings (5.8) become

α(BI)
p =

(D−2p)!

(D−2)!n
ℓ2p−2
eff

(

n

p

)

, 0 ≤ p ≤ n−1. (5.13)
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BI-AdS gravity can naturally incorporate into the bulk piece of the action (2.1) the (topo-

logical) Euler term E2n = ǫA1...AD
R̂A1A2 . . . R̂A2n−1A2n with an appropriate weight factor

α
(BI)
n arising from (5.13) for p = n. As the Euler term is locally equivalent to the boundary

term (4.3), the complete action (2.1) is also written as

I
(BI)
D =

1

16πnGD

ℓ2n−2
eff

(D−2)! 2n

∫

M
d2nx

√
−G δ

[µ1···µ2n]
[ν1···ν2n]

(

R̂ν1ν2
µ1µ2

+
1

ℓ2
eff

δ
[ν1ν2]
[µ1µ2]

)

· · ·

· · ·
(

R̂ν2n−1ν2n
µ2n−1µ2n

+
1

ℓ2
eff

δ
[ν2n−1ν2n]
[µ2n−1µ2n]

)

, (5.14)

which is both invariant under AdS group and regularized by construction. Again, the

Kounterterms procedure provides a finite answer for the mass from eq. (4.11)

M (BI) =
vol(Σk

D−2)

8πGDℓ2
eff

r+

(

r2
++kℓ2

eff

)n−1
, (5.15)

that has been obtained in Hamiltonian way, but also in a background-independent method

using the regularizing effect given by the inclusion of the Euler term [14].

The static black hole entropy in BI-AdS gravity is found by plugging the coeffi-

cients (5.13) into the formula (4.16)

S(BI) =
vol(Σk

D−2)

4GD

[

(

r2
++kℓ2

eff

)n−1−
(

kℓ2
eff

)n−1
]

. (5.16)

The issue of the entropy for BI-AdS black holes is more subtle than the regularization

of the Noether charges. If, instead, one uses the Euler term E2n to render the Euclidean

action finite as in (5.14), the entropy found will be shifted by the opposite of the last term

proportional to kn−1 in (5.16), which is related to the Euler characteristic χ2n of the man-

ifold. For solutions with hyperbolic horizon (k=−1), that entropy could become negative

for physically reasonable black holes (r+ <ℓeff ), as noticed for Einstein-Hilbert in [6]. How-

ever, in our approach, the problem is circumvented by using the Chern form (4.3), what

provides the consistent regularization prescription and the correct entropy in all cases of

even-dimensional Lovelock gravity.

Lovelock unique vacuum. Extending the idea of a single cosmological constant of

Dimensionally Continued AdS Gravity, one can adjust the coefficients of Lovelock series

to attain a family of inequivalent gravity theories that posses a unique AdS vacuum [12].

The choice (5.8) produces equations of motion where global AdS (maximally symmetric)

spacetime is a zero of m−th order.

The mass of asymptotically AdS static black holes was computed using Hamiltonian

formalism and AdS as the natural background reference for the energy. Here, we use the

background-independent formulas (3.34) and (4.11), to obtain the mass

M (LUV ) =
(D−2) vol(Σk

D−2)

16πmGDℓ2
eff

rD−2m−1
+

(

r2
++kℓ2

eff

)m
. (5.17)
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In odd dimensions, the vacuum energy can be calculated directly from eq. (3.36), and it

turns to be

E
(LUV )
0 = (−k)n

vol(Σk
D−2)

16πnGD

(2n−1)!!2

(D−3)!
ℓ
2(n−1)
eff

∫ 1

0
duuD−2m−1(u2−1)m−1. (5.18)

The corresponding entropy can be computed from (3.43), (4.16), once the Euclidean action

has been regularized by the addition of the Kounterterms series, and takes the explicit

form

S(LUV ) =
(D−2)vol(Σk

D−2)

4GD

∫ r+

0
dr rD−2m−1 (r2+kℓ2

eff )m−1. (5.19)

In [27], the above expression was obtained from the direct application of Wald’s prescrip-

tion [36] for Lovelock Unique Vacuum gravity. The same results can be reproduced using

identities derived from the gravitational bulk Lagrangian in [28]. Despite the fact that

these approaches lead to the correct formula for the entropy in all cases, they deal only

with local properties of the action at the horizon and it do not really provide an answer to

the problem of bulk action regularization for the asymptotic region in AdS gravity.

It is worthwhile noticing that this set of theories is not free from the inconsistencies

produced by negative values of the entropy (5.19) when the spatial section has negative

curvature. In that sense, Lovelock Unique Vacuum does not feature a more sensible ther-

modynamic behavior than, e.g., Einstein-Gauss-Bonnet with AdS asymptotics.

The existence of different values for the vacuum energy (5.18) for a given odd dimen-

sion suggests that the set of gravity theories ranging between EH and CS should have a

set of inequivalent CFT duals. This is also clear from the information coming from the

Weyl anomaly. On the contrary to EH-AdS, in (2n+1)-dimensional CS-AdS gravity the

holographic Weyl anomaly is proportional only to the Euler term in 2n-dimensions (type

A anomaly) with no contributions from the Weyl tensor (type B anomaly) [34]. Then,

odd-dimensional gravity theories with 1 < m < n should posses a combination of both

types of holographic anomaly. As this information is usually extracted from the finite part

of a quasilocal stress tensor for AdS gravity, the present regularization prescription for

all Lovelock theories can be regarded as a step ahead towards a general formula for the

holographic anomaly in Lovelock-AdS gravity.

6. Conclusions

In this paper we have provided the explicit form of the boundary terms that regularize the

conserved quantities for asymptotically AdS solutions of Lovelock gravity. The prescription

for the boundary terms contains the extrinsic curvature and it only distinguishes even from

odd dimensions, independently of the particular model under consideration. Just the weight

factor of these terms needs to be consistently tuned in order to have a well-posed variational

principle for AAdS spacetimes. At the same time, the finiteness of the Euclidean action is

achieved.

In all the known cases (Einstein-Gauss-Bonnet, Chern-Simons, Born-Infeld, Lovelock

Unique Vacuum) both conserved charges and black hole thermodynamics agree with the
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standard results. Even if the Noether charges assign a non-vanishing vacuum energy to

AdS in odd dimensions (which is unobservable in background-dependent methods), the

entropy expression is still the correct one, because the Euclidean action appears shifted

consistently.

In even dimensions the boundary prescription is given by the maximal Chern form.

This is the structure appearing in the Euler theorem as the correction to the Euler char-

acteristic of the manifold due to the boundary. In odd dimensions, the regularizing terms

are linked to the existence of extensions of Chern-Simons densities called transgression

forms [37].
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